
Journal of Statistical Physics, Vol. 59, Nos. 3/4, 1990 

The Kirkwood-Salsburg Equations for 
Random Continuum Percolation 

James A. Given ~ and George Stell ~ 

Received April 7, 1989; revision, received December 5, 1989 

We develop two different hierarchies of Kirkwood-Salsburg equations for the 
connectedness functions of random continuum percolation. These equations are 
derived by writing the Kirkwood-Salsburg equations for the distribution func- 
tions of the s-state continuum Potts model (CPM), taking the s-~ 1 limit, and 
forming appropriate linear combinations. The first hierarchy is satisfied by a 
subset of the connectedness functions used in previous studies. It gives rigorous, 
low-order bounds for the mean number of clusters (no) and the two-point con- 
nectedness function. The second hierarchy is a closed set of equations satisfied 
by the generalized blocking functions, each of which is defined by the probabil- 
ity that a given set of connections between particles is absent. These auxiliary 
functions are shown to be a natural basis for calculating the properties of con- 
tinuum percolation models. They are the objects naturally occurring in integral 
equations for percolation theory. Also, the standard connectedness functions 
can be written as linear combinations of them. Using our second Kirkwood- 
Salsburg hierarchy, we show the existence of an infinite sequence of rigorous 
upper and lower bounds for all the quantities describing random percolation, 
including the mean cluster size and mean number of clusters. These equations 
also provide a rigorous lower bound for the radius of convergence of the virial 
series for the mean number of clusters. Most of the results obtained here can be 
readily extended to percolation models on lattices, and to models with positive 
(repulsive) pair potentials. 
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1. I N T R O D U C T I O N  

This paper is a contribution to an ongoing project 2 of calculating the 
properties of random and correlated percolation models by extending 
methods already developed in the thermal theory of liquids. Typical 
properties of interest are mean cluster size and mean number of clusters. 
We develop here some hierarchies of Kirkwood-Satsburg type and use 
them to extract information about random continuum percolation. This 
introduction gives a perspective on our approach to continuum percola- 
tion; the Kirkwood-Salsburg hierarchy will be introduced in Section 3, 
where it is first used. 

Our motivations for this work are twofold. First, we wish to develop 
a computational theory of percolation phenomena that does not require 
the rather drastic simplifying assumption of a lattice geometry. Apart from 
the calculation of critical exponents, many of the interesting quantities that 
describe percolation can be best obtained from models with continuum 
geometry. Continuum models have an additional advantage over lattice 
models: in calculating their properties, one can make use of the powerful 
techniques of liquid-state theory that have been developed over the past 
several decades. Our second motivation for developing the theory 
explained here lies in our interest in calculating the bulk properties of com- 
posite materials. If such a material is composed of substances having radi- 
cally different material properties (for example, if one of its phases is much 
more conductive than the others), it can show one or more percolation 
thresholds as its composition is varied. The development of accurate 
approximations and bounds for such properties that account for percola- 
tion phenomena is a challenging open problem. We believe that the con- 
nectedness functions studied in this paper, which are essentially distribution 
functions that account for connected paths, will be an essential ingredient 
in such bounds and approximations. 

One way of adapting the techniques of liquid-state statistical physics 
for use in percolation theory is to exploit the connection between con- 
tinuum percolation and the continuum Potts model (CPM). This is a 
generalization of the connection established by Fortuin and Kastelyn ~7) 
between lattice bond percolation and the lattice Potts model. Klein ~9) 
described the extension of this correspondence to the continuum; Given 
and Klein developed a Born-Green hierarchy for the connectedness func- 
tions. We have explored the application of various techniques to this 
model, in order to extract information about percolation, including series 
methods (8) and scaled particle theory. ~13) We will first sketch the connec- 

2 The literature is rapidly growing. For representative references including those of particular 
relevance to our approach here see refs. 2-13. 
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tion with continuum percolation provided by the CPM. We then show how 
this connection helps realize computationally the theoretical insights of 
Hill (6) and Coniglio et aL ~2) 

The CPM is a many-body thermal system consisting of particles that 
are of s species, or, equivalently, are in any of s different internal states or 
"spin" states. These particles have pairwise interaction 

V~=v(x , ,  xfl[-1 - 6~,~,] + r xj) (1.1) 

Here v(xi, xi)  is a nonnegative pair potential acting between pairs of par- 
ticles of unlike species (or, equivalently, internal states or "spin" states) 
indexed by ~i- The r XJ) is a pair potential common to all species or 
states. In the classical description we consider here, particles are typically 
characterized by their position, momentum, and spin state; the partition 
function for this model involves integration over the former two coor- 
dinates and a summation over the latter. Thus, the particle states can be 
described by the ~i a n d t h e  vectors xi = (ri, s Pi), where ri is a center-of- 
mass position vector, p, is a momentum vector, and ~ is an orientation. 
Model pair interactions often involve only the r~ in addition to the species 
designation e~ and for simplicity we shall assume hereafter that x~ means rg 
unless we specifically note otherwise. Furthermore, we will assume that the 
functions v and ~b in (1.1) depend only on the absolute distances I x~ -x f l ,  
which we will denote as x o. (or as just x when no confusion will result). It 
is useful to note here that this model is an s-state generalization of the 
Widom-Rowlinson model, ~ in which r  0, and v is usually taken to be 
a hard-sphere interaction. This model has been extensively employed in the 
theory of liquids as a model of phase separation. It will suffice for our 
purposes, however, to consider the special case in which the fugacities of 
all s phases are equal. 

All the quantities that describe continuum percolation can be obtained 
from the corresponding quantities characterizing this model in the limit in 
which s, the number of states, tends to one. In this limit, the system 
described by the interaction (1.1) becomes a percolation model in which 
particles are distributed according to distribution functions corresponding 
to the potential r and are pairwise connected with a separation- 
dependent bond probability 

pb(Xi, X i) = 1 - - e x p [ - -  flv(xi, xj)] (1.2) 

Such models have been widely studied by both series expansions ~2'3) and 
integral equation techniques ~4'5) ever since a formalism for their study was 

822/59/3-4-29 
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provided by Hill. ~6) This is based on separating the pairwise Boltzmann 
factor corresponding to thermal interaction ~b(x) into two parts, 

exp(-fl~b) = e -+ + e* (1.3) 

with 

e +- =e-#~(x)pb x( ) (1.4) 

e* = e fl~(x)[1 - pb(x)] (1.5) 

+ is called the connectedness part and e* is called the The function e 
blocking part of the Boltzmann factor. Each is the product of a thermal 
Boltzmann factor and a bonding (or nonbonding) probability. Note that 
we assume at this point that the systems we deal with are homogeneous 
and isotropic; thus pb(X), O(X), and other functions of the position of two 
particles are assumed to depend only on the scalar separation of these 
particles. The Mayer f function is then separated in a corresponding man- 
ner into the sum of a connectedness bond and a blocking bond 

f = f •  + f *  (1.6) 

with f +  = e  +- and f *  = e * - 1 .  In order to define percolation quantities, 
one then substitutes for the Mayer functions in the virial expansions of 
physical quantities, expands, and retains the subgraphs with at least a 
single path of connectedness bonds joining each pair of root points. These 
expansions have been described in detail. (2'3) The CPM approach we 
consider here is equivalent to this earlier approach. To see this, we write 
the Mayer bond for the general interaction (1.1) as 

f ( x )  = e-t3:(X){pt,(x) 6~i~j+ [-1 - pb(X) ] } -- 1 

=/-+6=i=:+ f *  (1.7) 

with pb(X) the bond probability (1.2), and f +  and f *  just defined. The 
Kronecker delta in (1.7) and, in general, the spin variables of the CPM will 
serve as a technical device to select out just those contributions to the ther- 
mal distribution function specified by Hill's definition of the connectedness 
function. This correspondence has been elaborated in detail in ref. 8. It 
allows one to calculate efficiently higher-order terms in the virial expan- 
sions of percolation quantities (8) by using the Ports-model spin algebra 
as a device for selecting the proper terms automatically. It also provides 
us with a powerful means of deriving expressions to which we would 
otherwise not be led. 

For simplicity, we generally work with random percolation in this 
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paper; ~b(x) will then be set to zero. We will often make pedagogical use of 
what is perhaps the simplest model described within our framework, that 
of random-sphere percolation, in which we choose 

pe(x) = {1, O < x < l  (1.8) 
O, otherwise 

However, our results are quite general; they can be extended immediately 
to lattice percolation models, and many can be extended to correlated 
percolation models with positive potential ~b(x). We discuss this further in 
the concluding section. We hope to address the important case of attractive 
interaction between particles in a future publication. 

In this paper, we derive a closed hierarchy of Kirkwood-Salsburg 
equations for random percolation. They allow us to give a rigorous 
lower bound for the convergence of the virial series of percolation theory, 
including those for the mean number of clusters, and for the connectedness 
functions. These functions, which are analogous to distribution functions in 
thermal models, give the probability that groups of particles are connected 
into clusters. 

This paper is organized as follows: in Section 2, we define the connec- 
tedness functions and various related functions needed in this paper. The 
Kirkwood-Salsburg equations for the CPM are written down in Section 3. 
Two different methods then yield hierarchies of Kirkwood-Salsburg equa- 
tions for connectedness functions. The first, which is based on projection 
methods, gives Kirkwood-Salsburg equations only for a subset of the par- 
tial connectedness functions. The second involves a special choice of basis 
functions, which we call generalized blocking functions. These functions, 
which are denoted by gb(1,..., n; P), where P is a partition of the integers 
(1 ..... n), are defined by the probability that particles whose indices are 
separated by the partition P are not connected. In terms of these functions, 
we give the first closed Kirkwood-Salsburg hierarchy for percolation 
theory. In Section 4, this hierarchy is used to provide an infinite sequence 
of rigorous upper and lower bounds for all the basic functions of percola- 
tion theory, including the connectedness functions, the mean number of 
clusters (no), and the mean cluster size S(I~), where r is the expected num- 
ber density of particles. In Section 5, specific upper and lower bounds are 
developed for (nc) and for the two-point connectedness function. These 
are expressed in terms of the density ~ and integrals of the 
bond probability pb(xij). Section 6 discusses two extensions of our basic 
bounding procedure capable of supplying bounds for the mean cluster size. 
The first of these is developed far enough to yield explicit bounds. In 
Section 7 we use the Kirkwood-Salsburg hierarchy to provide a rigorous 



986 Given and Stell 

lower bound for the radius of convergence of the virial series for (nc).  
Section 8 gives our conclusions and directions for further research. 
Appendices A and B verify some technical lemmas needed to show that the 
Kirkwood-Salsburg hierarchies for percolation in fact yield rigorous 
bounds, Appendix C develops a different bounding procedure which yields 
monotone convergent sequences of bounds. 

2. C O N N E C T E D N E S S  F U N C T I O N S  A N D  GENERALIZED 
BLOCKING F U N C T I O N S  

In this section, we define both the n-point connectedness functions and 
n-point blocking functions of continuum percolation theory. We will show 
how both sets of functions may be derived from the one-state limit of the 
CPM distribution functions. Various subsets of the connectedness functions 
have appeared in previous work on percolation theory; we will need the 
complete set of them for this study. The n-point blocking functions are 
actually special linear combinations of the connectedness functions. We will 
define them separately, and explain why they are the natural basis set for 
studying percolation models. We also use the M6bius inversion theorem to 
give explicitly the coefficient matrix relating the two sets of functions. 

The spin-dependent, n-point distribution function for the continuum 
Potts model (CPM), which is written p(lal ,  2a2,..., nan), is the expectation 
density associated with finding a particle at Xl in spin state al, another 
particle at x2 in spin state a2, etc. We will find it convenient to work 
instead with the distribution functions gt(lal,..., nan) defined by 

pt(lcq ..... nan)= p(iai)  g t ( l a l  ..... nan) (2.1) 
i 

We use the subscript t to refer to thermal distribution functions; the sub- 
scripts b and c will refer, respectively, to the blocking and connectedness 
functions to be defined presently. For the homogeneous systems discussed 
here, in the absence of external fields, p(i~i) is a constant p; thus, going 
from the {Pt} to the { gt} in this case is a trivial renormalization. Note also 
that for brevity we write 1 for x~, for x2, etc. 

The one-state limit of these functions is related to the set of partial 
connectedness functions of percolation. These functions, which are written 
go(l, 2 ..... n; P) with P an arbitrary partition of the integers (1,..., n), are 
defined as follows: r is the expectation density associated with finding a 
set of n distinct particles centered at the positions (x~ ..... x,) connected in 
clusters according to the partition P. That is, a pair of the particles at posi- 
tions (x~,..., xn) are in the same connected cluster if and only if their indices 
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are grouped together in the partition P. We emphasize that any number of 
additional particles besides those at (xl ..... x~) may be contained in the 
same clusters as these latter particles. For the simplest types of connected- 
ness functions, one often omits the argument P from the function go, and 
specifies the grouping of particles by using slash marks to separate the 
connected groups of particles. In particular, the function ~Sngc(1 ..... n), often 
simply called the connectedness function, is the expectation density 
associated with finding particles at Xl through xn all in the same cluster. It 
has been found useful, in terms of obtaining closed hierarchies of equa- 
tions, (1~'12~ to work with the function tinge(l/2 ..... n), defined as the expecta- 
tion density associated with finding particles at x~ through x~, with those 
at x2 through xn all in the same connected cluster, and the particle at xl 
in a different cluster. The case n = 2 is also the simplest example of a block- 
ing function, which we define next. 

The blocking function fingb(1 ..... n ;P )  is the expectation density for 
finding particles at positions (x~,..., x,) such that no pair of them whose 
indices are not grouped together in the partition P are contained in the 
same cluster. Note that, according to this definition, no pair of particles 
need be connected; configurations of the system in which no pair of the 
particles at (x~,..., x~) are connected will contribute to all blocking func- 
tions. 

We review the construction used by Fortuin and Kastelyn to analyti- 
cally continue the Potts model to general, noninteger s. We must extend 
this construction to the continuum and apply it to the distribution 
functions. The CPM expectation density can be written 

p,(l~l ..... nc~,) = ( N - n ) !  ~ dxi 
N = n + l  {~ i}  i = n + l  

 exp( 
i < j  

where 2 is the CPM grand partition function and V o. is the interaction 
(1.1). We have chosen here to work in the grand canonical ensemble in 
order to establish most economically Kirkwood-Salsburg expansions. (6) 
Such an expansion for the CPM will involve power series in the density 
p(z, s), taken here to be a function of the fugacity z and s, the number of 
spin states. Consider the case r  0 of (1.1). If we simply take the limit 
s-* 1 in our CPM before performing any other operations, we have, in this 
limit, p(z, s)Is_ 1-* P = z. The fugacity and density are equal in this limit, 
as expected for an ideal gas; the Potts model interaction disappears in this 
limit because there is no interaction between particles in the same state. 
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The sum in the rhs of (2.2) is over all s values of the spins ~n+1 ..... (z N. The 
total Boltzmann factor may be expanded 

H e-aVe= 1] e-+~ I] {pb(X~)6~,,=,j+ [1 --pb(Xij)]} (2.3) 
i < j  i < j  i < j  

with pb(x~) given by (1.2). 
When the product (2.3) is expanded out, it gives a sum of terms, each 

of which is identified with a graph G and associated with a probabilistic 
event as follows: for a fixed position in configuration space (xl,..., XN) 
associate a graph having vertices at these positions. With a probability 
pb(x~j), connect the points i and j with a bond; otherwise do not. These two 
events are associated respectively with choosing the first and second terms 
from the corresponding bracket in (2.3) when expanding that product. 
Since, for any potential v(x), the terms pb(x), as defined by (1.2), and 
[ 1 -  pb(X)] add to unity, this is a consistent interpretation of our expan- 
sion as a probabilistic weighting of the phase space elements that con- 
tribute to g,. The first factor in (2.3) is not expanded; thus, each phase 
space element receives a Boltzmann weight corresponding to the potential 
q~(x). Note that each factor pb(xo. ) is accompanied by a Kronecker delta 
6~i~j; thus, two particles that are connected must be in the same spin state. 
Conversely, two particles in different spin states must not be connected, 
directly or indirectly. The sum over spins ~n + 1 ..... a N then gives each graph 
G a weight s no, where nc is the number of distinct clusters in the graph G 
that do not contain any of the particles at (x~,..., x,). 

We now make several observations about the expansion just perfor- 
med. First, the number of states s appears only in the weight factor s "c, 
which becomes unity in the s ~  1 limit. Also, the spins ~,...,  ~, are not 
summed over. This implies that the quantity g,(l~, . . . ,  n~,) is well defined 
in the limit s ~ 1, even if cq,..., ~ are not equal. If we now consider this 
expansion to define the function gt of (2.2), the parameter s, which 
originally had a physical interpretation as the number of states in the 
CPM, can be divorced from this interpretation to become a mathematical 
quantity capable of taking on a continuum of values. In the limit s ~ 1, all 
phase space elements, or graphs, in which two of the external particles in 
different spin states are in the same connected cluster will make no con- 
tribution to this expansion. Other graphs receive their usual Boltzmann 
weights, multiplied by the product, for that graph, of the bond probabilities 
associated with it. Note that in general, a phase space element, i.e., a con- 
figuration of particles, can make nonzero contribution to a number of 
different graphs, i.e., schemes for connecting particles. These results can be 
summarized as follows: the s ~ 1 limit of the CPM distribution function is 
a blocking function as defined above, for the associated percolation model. 
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A valuable notation is provided by rewriting gt(lcq ,..., nc~n) as g~(1,..., n; P), 
where the partition P groups together indices i and j iff c~ = ej. This is 
possible because the C PM distribution functions depend not on the values 
(cq,..., ~,), but only on whether these are the same or different pairwise. We 
have then, 

gt(1,..., n; P) --* gb(1,..., n; P)  (2.4) 

as s ~ 1, where the partition P on the rhs also groups together two indices 
i and j only if ei = ~j. 

The expansion just described is especially transparent in the case of 
sphere percolation, defined by (1.8). In this case, each configuration of par- 
ticles can be connected by bonds with nonzero probability in exactly one 
way, i.e., two particles are connected in a graph iff they are closer together 
than 1. The weighting factor due to bond probabilities equals unity in this 
case. Thus, adding the hard-sphere Potts interaction corresponding to (1.8) 
to a thermal model with interaction ~b(x) and taking s ~  1 acts as a 
"projection operator" on the thermal distribution functions, projecting out 
graphs or contributions with specified connectedness properties. [In a 
slight abuse of mathematical terminology, we will continue to use this term 
in the case of a general bond probability pb(x) even though we have not 
introduced any operator P such that PP = P.] 

For obtaining equations for the quantities of percolation theory from 
the CPM, it is convenient to use the projection idea in a systematic 
way.(9 12) We explain this technique briefly as follows: as just shown, the 
one-state limits of the distribution functions are blocking functions. The 
blocking functions can, with effort, then be expressed at sums of connected- 
ness functions. But certain frequently encountered connectedness functions 
can be obtained directly from the C PM distribution functions. This 
involves multiplying a CPM distribution function by a quantity that 
depends on its external spin arguments, summing over those arguments, 
taking an s derivative, and setting s equal to unity. When this method is 
available, it allows automatic derivation of equations for percolation quan- 
tities: one writes down, for the case of the CPM, any standard set of 
relations from chemical physics that hold for distribution functions, and 
applies the operations just described to both sides. We give two examples, 
involving the functions go(1 ..... n) and go(l/2 ..... n) which have been derived 
elsewhere.(ll) 

The connectedness function gc(l ..... n) can be expressed as follows: 

go(1 ..... n ) = d  s= 2 Is (1 -~ i~ )g t ( l~ l , ' " , n~ , , )  (2.5) 
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Here ~ is an arbitrary spin state and the sums are over all possible values 
of el through e,.  If we expand the quantity g,(1~1 ..... n~,) of (2.5) as 
described below (2.3), substituting the separation ( f  -+ 6~,~j + f * )  for each 
Mayer function, the only subgraphs contributing to (2.5) will be those with 
a path o f f  + bonds joining each pair of root points. To see this, note that 
each such chain forces the root points it connects to be in the same spin 
state (because of the factor 6~,~j accompanying each f + bond). This collap- 
ses the spin sums in (2.5) which would otherwise each give a factor ( s - 1 )  
and cause this term to vanish in the one-state limit. Thus, the operations 
performed on g, in (2.5) serve to "project out" connected contributions. 
The function go(l/2 ..... n) can be expressed as follows: 

gc(1/Z, . . . ,n)=d s • l~I ( 1 - 6 ~ )  gt(lcq,...,n~,) (2.6) 
= 1 { ~ }  i =  2 

The identities (2.5) and (2.6) were proven in ref. 12. These projection 
operators simply form the proper linear combinations of blocking functions 
to give connectedness functions. 

We now develop an explicit relation between the connectedness and 
blocking functions in the general case. To do this, we note that it is 
possible to develop connectedness functions for the CPM that will reduce 
to the functions already defined for percolation in the s --+ 1 limit. Given a 
criterion for pairwise connectedness such as (1.8), we can sort configura- 
tions in the ensemble average defining g,(l~l ..... n~n) according to the con- 
nections existing between the particles at positions (1,..., n). This is what is 
implied by the term projection operator used above. For example, define 
Go(1 ..... n) to be the restriction of the ensemble average defining 
g,(l~ 1 ..... nc~n) to configurations in which each pair of particles are joined 
by at least one chain of pairwise connected particles. Fortuin and 
Kastelyn (7) noted that this function is identical to g~(1 ..... n), except that 
each configuration contributing to the latter is weighted in the former by 
a factor s% where n~ is the number of clusters not containing any of the 
particles at x, through x, .  In the limit s-+ 1, this becomes gc(1,..., n). 
Finally, we note that these functions are easily related to the CPM 
distribution functions. (14) For example, 

g,(l~, 2 ~ ) = 1  G~(1, 2 )+  
1 

s ~ G~(1/2) (2.7) 

This is easily seen: the left-hand side (lhs) of this equation is the probability 
that the particles at Xl and x2 are both in spin state ~. Since all spin states 
are equally likely and because any two particles in the same connected 
cluster must be in the same spin state, the probability of this event is 1/s 
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if the two particles are connected, and 1Is 2 if they are not. By similar 
reasoning, one has 

g,(17, 2/~) = (1/s z) Gc(1/2) (2.8) 

Setting s = 1 in (2.7) and (2.8) and also using (2.4) then gives a linear rela- 
tion between blocking and connectedness functions. In order to treat the 
general case, we note that the set of all partitions of the integers (1 ..... n) 
has a natural partial ordering: P' ~< P whenever the partition P'  is a refine- 
ment of the partition P. Assume that the partition P divides the integers 
(1, 2 ..... n) into sets P1, P2,'", and that the refinement partition P'  breaks 
these into N(P1), N(P2),... subsets, respectively. Then one can show that 

gt(1,..., n; P ) =  ~ I-I s-N(e')Gc(1 ..... n; P') (2.9) 
P'  <~P i 

The one-state limit of (2.9) is 

lim g~(1 ..... n; P) = gb(1 ..... n; P) 
s - ~ l  

= ~ go(I,..., n; P')  (2.10) 
p ' < ~ p  

Using the properties of partial orderings, (15'16) the relation (2.10) can 
be inverted to give 

gc(1,...,n;P)= ~ #(P,P')gb(1,...,n;P') (2.11) 
p '  <~ p 

where /z(P, P')  is the M6bius function for the partial order on partitions 
defined below Eq. (2.8). The M6bius function for any partial order can be 
defined recursively (15~ as follows: 

f l~ P=P' ~(p', p) = ~ It(P', P"), P' < P 
p '  <~p"  < p  

otherwise 

(2.12) 

Some low-order examples of relation (2.11) are 

g,(1, 2 ) =  lira Egt(l~, 2~) - gt(lct, 2fl)] (2.13) 

go(l/2, 3) = tim [g,(l~,  2fl, 3/~)-  g,(l~, 2//, 37)] (2.14) 
s - - ~ l  
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Here c~,/~, and 7 are any three different spin states. Although a general, 
closed-form expression for the M6bius function in (2.11) has been 
derived, (I6) it will not be needed here. 

Two further properties o f  these functions will be important in the 
following. Because the blocking function is a constrained sum over the 
same configurations that contribute to gt(1 ..... n), the distribution function 
with pairwise potential ~b(x), one has 

0 ~< gb(1,..., n; P) ~< g,(1,..., n) (2.15) 

Note that when ~b(x)=0, gt(1,...,n)= 1. Also, from the definition (2.10), 
one has 

gb(1,...,n;P')<~gb(1 ..... n;P), P'<~P (2.16) 

3. K I R K W O O D - S A L S B U R G  E Q U A T I O N S  FOR P E R C O L A T I O N  

In this section, we derive two sets of equations of Kirkwood-Salsburg 
type for random continuum percolation. The first uses the projection 
operators of Section 2 and relates two sets of connectedness functions 
defined in that section. These will be used in Section 4 to derive upper and 
lower bounds on percolation quantities. The second, which is a closed 
hierarchy for the generalized blocking functions of Section 2, will be used 
to bound the radius of convergence of series expansions in percolation. 

The Kirkwood-Salsburg equations (6) are a special case of a very 
general set of integral equations for the distributions of a many-body 
system. They are derived by focusing on a specific particle (we use par- 
ticle 1) and expanding the ensemble average defining g,(1 ..... n) in powers of 
the interaction strength of that particle. Specifically, one develops a cluster 
expansion in which the effects of particle 1 on all the different groups of k 
particles, k >  1, are systematically taken into account. As a result, the 
expansion 0f gt(1,..., n) has terms depending on gt(1,..., n +k) ,  k >  1, for all 
values of k. These equations are thus not suited to direct computation 
except in mean-field approximation, in which the entire set of distribution 
functions are expressed in terms of the one- and two-point functions. They 
are, however, well suited to establishing general properties of the fluid dis- 
tribution functions. In particular, a basic inclusion-exclusion structure of 
the cluster expansion involved has been used to establish upper and lower 
bounds for distribution functions. (2~ The recursive nature of this hierarchy 
has been used to provide bounds for the radius of convergence of virial 
expansions.(22) 

The basic mathematical structure underlying the Kirkwood-Salsburg 
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expansion of distribution functions is quite old; it is implici t in Boltzmann's 
treatment of the hard-sphere fluid. (17) The central development of 
Boltzmann's argument is a geometric inclusion-exclusion relation for the 
volume available in a hard-sphere fluid for insertion of an additional par- 
ticle. This volume is expressed as the total system volume minus the total 
volume contained in the exclusion spheres of at least one particle, plus the 
total volume contained in the exclusion spheres of at least two particles, 
and so on. Stell (1~/used this argument to obtain bounds on the pressure of 
hard-particle systems. Recently, the same basic argument has been found 
useful in a variety of attempts to characterize the geometry of random 
materials. Torquato and Stell (is) srudied the matrix functions S,(1,..., n) for 
a system of permeable spheres of one material dispersed in a matrix of 
another material. The functions Sn, which give the probability that the 
points xl through x, are all contained in the matrix phase, were shown to 
satisfy a Kirkwood-Salsburg hierarchy. Fanti etal.  (19) provide a 
Kirkwood-Salsburg expansion, in terms of the set of total connectedness 
functions go(I,..., n), for the mean volume V, of clusters of size s in a 
continuum percolation model. 

These developments have certain desirable features in common, due 
to their reliance on the inclusion-exclusion argument described above. 
Kirkwood-Salsburg expansions derived in this manner are alternating 
series whose terms decrease monotonically in magnitude. The partial sums 
of such a series provide, alternatively, upper and lower bounds for the 
quantity being expanded, and these bounds converge monotonically. 
Unfortunately, in treating thermodynamic functions and distribution func- 
tions for systems of interacting particles, it is only the special case of hard 
particles, which have well-defined boundaries and an interaction defined 
by a geometric excluded-volume effect, that these inclusion-exclusion 
arguments apply. For a general, repulsive interaction, analytic arguments, 
such as the remainder theorem for a Taylor series expansion (2~ seem to be 
necessary to show that partial sums of the Kirkwood-Salsburg equations 
provide bounds. These arguments give no information about monotone 
convergence of the bounds. In treating continuum percolation, we find such 
analytic arguments necessary even for systems of particles with sharply 
defined boundaries [e.g., the system of randomly centered spheres defined 
by (1.4)], basically because of the nontrivial combinatoric structure of the 
Kirkwood-Salsburg equations that describe percolation models. Further 
perspective on these questions is provided in Section 8. 

The Kirkwood-Salsburg hierarchy of integral equations for the CPM 
is a special case of a hierarchy defined for any system with pairwise 
additive potential energy. It presents no special difficulties; thus, we write 
it down directly, noting that integrations over particle positions and 
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momenta must be accompanied by sums over spin states. These equations 
a re  

P ( ~ I ) _  1 -1- ~ "'" ~ l~ f(xa, xk, o{1, O{k) 
z(cq) , , :~ ~m+, k=2 

| g,(2~2,.-., m +  1~,,,+ 1) dx2" .dxm+l (3.1) 

k=2 

oo pm f n+m 
"k-Era= ~f" E "'" E j H f(xl'xk'O;l'O;k) 

=1 C~n+ t O:n+ m k = n + l  

| gt(2a2 ..... n+man+m) dX.+,...dXn+mJ (3.2) 

This expansion was first discussed in ref. 11. Here we have extracted a 
factor of pn from the n-point expectation density to get the usual marginal 
distribution function for a fluid. The CPM density p and fugacity z are 
written as functions of spin state cq. However, since we here take the 
fugacities of different spin states to be equal, and because we make no 
reference to  broken-symmetry states of the CPM, the density p will be 
independent of spin state. This last condition must be violated in order to 
consider the structure of the infinite cluster; this will be reserved for a 
future publication. Also, in the first term on the rhs of (3.1) the function 
gt( 2, ~2) is equal to unity for homogeneous systems, such as our CPM. 

Equations of the form (2.10) show that linear combinations of 
Eqs. (3.2) will give, in the one-state limit, Kirkwood-Salsburg equations for 
the connectedness functions. In general, these are quite complicated. Even 
in the case of random continuum percolation, a closed, linear hierarchy 
(one containing only one partial connectedness function of each order) 
does not seem to exist. Hierarchies tend to involve the entire set of partial 
connectedness functions. One can, however, derive a valuable set of 
Kirkwood-Salsburg equations which involve only the connectedness 
functions (2.5) and (2.6). We develop these equations next. 

We want to develop Kirkwood-Salsburg equations for the functions 
go(i/2,..., n). To do this, we multiply both sides of (3.1)-(3.2) by th~ projec- 
tion operator 

l~I (1 - -  (~laj)  (3.3) 
]=2  

sum over spins c~ 1, e2 ..... e~, take an s derivative, and set s equal to unity. 
Note that by definition the product (3.3) is equal to unity in the case n = 1, 
i.e., for Eq. (3.1). In evaluating the result, we need to note both the spin 
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dependence of the Mayer function (1.7), and the identities (2.5) and (2.6). 
Performing the operations just indicated on the lhs of (3.2) gives the 
function gc(1/2,..., n) as desired, as seen from Eq. (2.6). To evaluate the rhs, 
first perform the sum over cq. Here, the fugacity z will be equal to r the 
percolation density, for the case of random percolation and momentum- 
independent xi to be discussed here. Because the distribution functions on 
the rhs are independent of c~ 1, all s terms in the sum over this variable are 
equal. We then extract a factor of s (which can then be set equal to unity, 
since each term on the rhs is proportional to s - 1 ) ,  and the s derivative 
must cancel this factor. For convenience, we also set :q = 7. Using the iden- 
tity (2.5), the first term on the rhs can be identified with the connectedness 
function gc(1, 2,..., n). Every other term on the rhs also becomes a connec- 
tedness function. To see this, note that each successive term contains one 
more factor ( 1 -  6~k ) from the corresponding Mayer function. Each suc- 
cessive term also contains a gt function with one more argument (xk, c~k), 
and the xk integral is accompanied by a sum over c~k. Thus, each rhs term 
contains a copy of the identity (2.5) for a different value of n. 

Finally, we note that the spin dependence of the first product on the 
rhs of (3.2) does not affect these considerations. To see this, rewrite this 
product using Eq. (1.7): 

I~I {Pb(Xlk) 6~1~k+ [1 --Pb(Xlk)]} (3.4) 
k = 2  

When this product is multiplied by the projection operator (3.3) and the 
spin sums are performed, the first term in each factor of (3.4) drops out. 
The result is 

]21 [1 - pb(xlk)] (3.5) 
k = 2  

Equations (3.1)-(3.2) thus become 

d ~ (__~)mfrn+l 
d/7 ( n o ) =  1 + m! I] pb(Xlk) gc(2,...,m+l) 

m = l  k = 2  

xdx2...dxm+ l 

gc(l/2,...,n)= ~ [ 1 -  pb(Xlk)] Igc(2,... , 
k = 2  

m = l  m! k = n + l  

x dxn+ l ...dxn+m] 

n) 

Pb(Xlk) go(2,---, n + m) 

(3.6) 

(3.7) 
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In Eq. (3.7), the function gc(x2) occurring in the first term of the sum 
on the rhs is equal to unity. This hierarchy expresses the functions 
gc(1/2,..., n) in terms of the connectedness functions gc(1,..., n) alone. In 
evaluating the lhs of (3.6), we use the relation 

d 

between the number of clusters per unit volume in continuum percolation 
and the density in the CPM. This relation follows by comparison of the 
virial series for the two quantities. (s) It will be discussed in more detail in 
Section 5. 

To illustrate the complexity that arises in most applications of projec- 
tion operators to this hierarchy, one can use similar techniques to derive 
Kirkwood-Salsburg equations for the connectedness functions gc(Xl ..... x,,) 
themselves. One simply multiplies (3.2) by the projection operator in (2.5), 
carries out the spin sums, and performs the operation (d/ds)ls=l. To 
characterize this expansion, it is useful to adopt the concept of a "hybrid 
cluster." When discussing a connectedness function g~(2 ..... n, n +  1 ..... 
n+m;  P) that occurs in the expansion of g~(2,...,n), we refer to a 
percolation cluster as "hybrid" if it contains at least one of the particles at 
positions (2,...,n) and at least one of the particles at positions 
(n+ l,. . . ,n+m). 

The Kirkwood Salsburg hierarchy for the connectedness functions 
(2.5) can now be written 

gc(1,..., n) 

= Y. I1 Pb(Xlk) H [1--pb(xlk)] 
S k ~ S  k ~ S '  

o2 
P 

gc(2 ..... n; P ) ( -  )/4(e) 

m=l mY J I-I pb(Xlk)(--) I4(P) 
�9 k = n + l  

m; P) dx,, + 1 dx,, + m] (3.9) • go(2,..., f /  + 

Here the first sum is over all subsets S of the integers (2 ..... n), and S' 
is the complement of S in this set. The second sum is over all partitions P 
of the arguments of the connectedness functions involved, such that each of 
the particles located at these arguments is either (1) connected directly or 
indirectly to at least one particle in the set S, or (2) contained in a hybrid 
cluster. 
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Here H(P) is the number of hybrid cluster in the configuration 
specified by the partition P. 

The irregular pattern of minus signs on the rhs of (3.9) due to the fac- 
tor (-)/~(p/ makes it difficult to extract useful bounds for this equation. 
Also, the complexity of this expression makes it difficult to work with, 
although the situation may be different for correlated percolation problems 
in which the correlating potential contains a hard core. In such problems, 
the expansions discussed here all terminate in a finite number of terms, as 
in the thermal Kirkwood Salsburg hierarchy. 

For purposes of calculating upper and lower bounds for the connec- 
tedness functions, it is best to work with the Kirkwood-Salsburg hierarchy 
for the blocking functions gb(1 ..... n; P), which were defined in Section 2. 
This will be derived next. 

Consider Eq. (3.2). The spin sums may be carried out formally by 
recognizing that the distribution functions g~ are not functions of the ei 
individually, but depend only on whether these arguments are the same or 
different pairwise. We exploit this fact, as in Section 2, by replacing the 
arguments {ei} by the partition P of the integers (1,..., n), which groups 
together particles whose spin indices are equal. This is explained in greater 
detail above Eq. (2.1). The distribution function on the lhs of (3.2) then 
becomes a function of the partition P of the integers (1 ..... n). Corre- 
spondingly, each distribution function on the rhs becomes a function of a 
partition P' of integers (2,..., n + m), which is consistent with the partition 
P, in the sense that it agrees with P when both are restricted to the integers 
(2 ..... n). Each such partition will correspond to many terms on the rhs of 
(3.2). In particular, if there are bl different spin indices in the set 
(el, 0'2,..., ~n) and b2 new indices in the set (en+~ ..... ~n+m) that are not 
among the first set, the multiplicity of the corresponding g, function is 

( S - b l ) ( S - b l -  1 ) . . - [ s - h i -  ( b 2 -  1)] (3.10) 

This corresponds to a partition P into b~ different sets and a partition P' 
into either (bl + b 2 -  1) different sets, if x~ is in a subset of 1 in partition 
P, or (bj + b2) subsets, if x~ is in a subset of P containing several other 
indices. After summing over spins and taking the s ~ 1 limit, (3.2) becomes 

gb(1 ..... n ; P ) =  f i  {pb(1, k )~ l~k+[1- -pb(1 ,  k ) ] } Igb (2  ..... n;P) 
k = 2  

+ (_~)m 
m = i  m! 2 d(m, P') ~-[ pb(l, k) 

P'  k = n + l  

| gb(2,..., n +m;  P') dx,,+ l "'" dx,,+m] (3.11) 
A 
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Here, the weight d(P, P') is the s -~ 1 limit of (3.10), namely 

d(P,P')={(lb, 1-1)b1(bl+l)'''(bl+b2-2)(-)b2' b2 =0b2~>l (3.12) 

In order to derive the results of Section 4, it is necessary to include in 
the hierarchy (3.11) an equation relating the mean number of clusters (no) 
to the set of functions {gb}. This could be done by rewriting Eq. (3.6), 
using identities of the form (2.11). However, an equation for (no) is more 
easily derived from (3.2) in the case s = 1 by taking an s derivative of both 
sides before setting s =  1 [see Eq. (3.8)]. This gives an equation for the 
density derivative of (nc)  of the form (3.11), but with the weighting factors 
d(P, P') of terms on the rhs now given by 

0, b 2 = 0 

d(P,P')= 1, b2=1 

(_)b2 1 (b2_ 1) ! ,  b2>1 

(3.13) 

4. FORMAL SEQUENCES OF EXACT BOUNDS FROM THE 
KIRKWOOD-SALSBURG EQUATIONS 

In this section, we present three arguments based on the formal series 
expansions of Section 3 that lead to sequences of rigorous upper and lower 
bounds for the basic quantities of percolation. These bounds will be com- 
bined using recursive elimination in Section 5 to give explicit bounds 
involving only the bond probability pb(Xij) and density ~. Our first argu- 
ment shows that successive truncations of Eqs. (3.6)-(3.7) have remainder 
terms that alternate in sign; these truncations thus furnish upper and lower 
bounds for the mean number of clusters (nc)  and for an important subset 
of the partial connectedness functions. These bounds are simple because of 
the relative simplicity of (3.6)-(3.7). However, higher-order bounds of this 
type involve connectedness functions which are not themselves included in 
the subset bounded through the use of (3.6)-(3.7). Thus, the bounding 
procedure resulting from this equation is not closed. 

Our second argument shows that successive truncations of the 
hierarchy (3.11) for the generalized blocking functions also have remainder 
terms which alternate in sign. Since, as we showed in Section 2, the 
generalized blocking functions form a complete basis for the set of connec- 
tedness functions, Eq. (3.11) then provides upper and lower bounds of 
arbitrarily high order for any of these. Since practical computation of these 
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bounds is more involved than computation of the bounds resulting from 
(3.6)-(3.7), the former are best used to extend and complement the latter. 

Our final argument establishes that a sequence of sufficiently high- 
order bounds that can be derived from Eq. (3.11) will converge monotoni- 
cally to the quantities they bound. This argument is included both for its 
mathematical interest and because the developments it involves may be of 
value in other contexts. 

Our basic starting point for the derivation of bounds for percolation 
quantities is the thermal Kirkwood-Salsburg hierarchy (3.1)-(3.2) for the 
CPM. The Kirkwood-Salsburg equations consist, in general, of a Taylor 
series expansion of the n-particle distribution functions in powers of the 
coupling strength of a specific particle. Now, if a system has purely 
repulsive potential interactions, its Mayer function is negative definite. 
Applying the remainder theorem to the Taylor-series structure of these 
equations shows that the remainder terms given by successively higher- 
order truncation alternate in sign. This observation was exploited some 
time ago to derive upper and lower bounds for correlation functions, both 
for a hard-sphere system (2~ and for a nonadditive mixture of hard-sphere 
species. (2t) The CPM is such a mixture. Furthermore, the alternation in 
sign of successive remainder terms is conserved by the operations that 
transform these equations into the pair (3.6)-(3.7). The argument estab- 
lishing this point is technical and has been relegated to Appendix A. Basi- 
cally, the result follows because the remainder term has the same structure 
as an arbitrary term from the rhs of (3.6)-(3.7). The term of order m on 
the rhs of (3.6) and (3.7) is easily seen to have the sign ( - )m  because the 
integrand in that equation is positive. The remainder term inherits this 
definiteness in sign. 

Obtaining higher-order bounds involves keeping an increasing number 
of terms in (3.6)-(3.7) and thus requires one to estimate higher-order 
connectedness functions. If care is taken to choose either upper or lower 
bounds for these according to the direction of the inequality, the connec- 
tedness functions can be successively eliminated, giving upper and lower 
bounds that depend only on the percolation density fi and on the separa- 
tion-dependent bond probability pb(X). One would ideally like to have 
arbitrarily high-order bounds for any of the partial connectedness func- 
tions, in order to eliminate these from (3.6)-(3.7). An argument similar to 
that just described shows, however, that the Kirkwood-Salsburg expansion 
for a general connectedness function will not yield upper and lower bounds. 
To see this, examine Eq. (3.9) and note that, in the sum over partitions, the 
general term can be positive or negative, because of the factor (-)H(e). 
This implies that the corresponding remainder term will be of indefinite 
sign, and thus will not provide bounds. 

822/59/3-4-30 



1000 Given and Stell 

One can, however, derive arbitrarily high-order bounds for the 
generalized blocking functions gb(1,..., n). This is not obvious from con- 
sideration of the Kirkwood-Salsburg hierarchy (3.11) derived for those 
functions, because the coefficients d of different terms on the rhs of those 
equations can have either sign [see Eq. (3.12)]. The integrands on the rhs 
of (3.12) are, however, positive definite. To see this, one can substitute 
(2.10) for each of the blocking functions, expand, and combine terms. The 
result is, in general, a linear combination of connectedness functions, each 
with coefficient + 1. This result will be established in detail, and its 
probabilistic interpretation will be discussed in Appendix B. Here we note 
simply that successive truncations of (3.11) will give upper and lower 
bounds on the blocking function g0(t,..., n). Because these bounds are 
provided for all such functions, the recursive elimination of the { go} can 
be carried out to arbitrarily high order, yielding kth-order upper bounds of 
the form 

k 

gb(1 ..... n) <~ ~ gl,(1,..., n)/3'+ ilk+ ~Sk(1,..., n) (4.1) 
i = 1  

and corresponding lower bounds. Here, the series on the rhs is a partial 
sum of the virial series for go. The virial coefficients gli are sums of Mayer 
integrals with pb(X) bonds; these have been described in detail. {3'8~ 

Because the blocking functions form a complete basis for expansion of 
the connectedness functions, one can write kth-order bounds for the latter 
as linear combinations of the corresponding bounds (4.1) for the former. 
This method of calculating bounds is more general, although less direct, 
than that provided by Eq. (3.6)-(3.7). Thus, the most efficient bounds for 
(no) and gc(1, 2) are probably those given by combining the two methods. 
This is in fact necessary to obtain bounds for the n-point connectedness 
functions with n/> 3. 

We note that, in general, successive bounds given by truncating the 
expansion (3.7) need not improve in quality monotonically. The alternation 
in sign of terms in (3.7), together with the interpretation of the connected- 
ness functions as probability densities, suggests that a geometric interpreta- 
tion of these equations using an inclusion-exclusion argument should be 
available. This is the case for many applications of the Kirkwood-Salsburg 
expansion technique, as discussed at the beginning of Section 3. The 
Kirkwood-Salsburg bounds resulting from such an inclusion-exclusion 
argument converge monotonically, and this property has great practical 
value. We do not provide such an interpretation here, and thus do not 
prove in general the monotonicity of the bounds discussed here. We do, 
however, provide partial results in this direction. We indicate here a means 
of construction for a series of upper and lower bounds that, except possibly 
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for the first N l bounds in the series, converge monotonically. Here N1 
is a fixed integer which depends on the gb function being bounded. This 
construction is only sketched here; it is described in detail in Appendix C. 

First, we note that the blocking functions, from their definitions, 
satisfy a basic set of inequalities. One has 

gb(1 ..... n; P) >~ gb(1,..., n, n + 1; P) (4.2) 

for ]Xlk[ < ~r; k = 1,..., n + 1. This is true because the blocking function on 
the lhs of this equation is defined to be the probability of not having any 
pair of particles connected whose indices are separated by the partition P. 
Having an additional (n+ 1)th particle near the set (1,...,n) can only 
increase the probability of finding such a connection. Thus, (4.2) follows. 

Next, we collect the terms in (3.ll) with positive and those with 
negative d weight as glp and ( -gin) ,  respectively, and write 

gl = g~p-g ln  (4.3) 

The bound (4.2) can be used to show that for n sufficiently large, the 
order-n term in glp and gin will dominate the corresponding order-(n + 1) 
term. This shows, then, that high-order truncations of both gle and 
gin give, alternatively, upper and lower bounds for these functions. 
Appropriate combinations of these then give monotonically converging 
bounds for the {gb}. 

Note that the property (4.2), which is essential for showing that the 
higher-order terms in gb decrease monotonically, is specific to the blocking 
functions; the connectedness functions do not obey such a relation, as is 
easily seen. 

5. SPECIFIC B O U N D S  FOR THE BLOCKING F U N C T I O N  A N D  
M E A N  CLUSTER N U M B E R  

In this section, the KS hierarchy (3.6)-(3.7) will be used to obtain a 
sequence of exact upper and lower bounds on both the mean cluster num- 
ber and the two-point connectedness function. Other methods of obtaining 
bounds will also be discussed. 

The lowest order KS equation for percolation is of the form 

d 

1 ~2 
f pb(X12) pb(Xl3) g~(x23) dx2 dx3 + R~ 1~ (5.1) 
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where R~ 1) is a negative term of order p 3. The definiteness of sign of such 
remainder terms follows from the argument of Appendix A. Using the 
procedure outlined above with this equation then leads to bounds on 
the r derivative of (no) ,  which, using the obvious boundary condition 
~nc) = 0 for t5 = 0, can be integrated. The resulting bounds on (n~)  will be 
written using the abbreviations 

A2 = f pb(X) dx (5.2a) 

A3 = f pb(x12) pb(Xl3) pb(X23) dx2 dx3 (5.2b) 

They are 

(no)  ~< fi (5.3a) 

1 
(no)  t> fi --~ fi2A2 (5.3b) 

1 1 3 2  (nc) <~fi---~ ~2Az +-~ fi A 2 (5.3C) 

_ 1 1 3 l~4A2(AZ2_A3 ) (5.3d) (nc) <~p--~fiZA2+gA3fi +-~ 

The inequality (5.3a) is obvious; it would be an equality if all clusters 
were singlets. Equation (5.3c) was obtained by using the trivial upper 
bound go(x)~ 1, whereas (5.3d) was achieved by using the upper bound 
(5.9b), to be derived below. Note that, as f i ~ 0 ,  (5.3b) and (5.3c) 
rigorously imply that 

(no)  --* fi - �89 (5.4) 

and in fact give the stronger result 

- 1 + 0 ( ~ )  (5 .5 )  

This is no surprise; it is fully consistent with the formally exact virial-series 
expansion in (5. The point is that the result is rigorously exact. Equa- 
tion (5.5) tells us that a description of (no)  on the level of the second virial 
coefficient becomes arbitrarily precise in the limit t7-, 0 and is exact 
through O(tS). 
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Bounds for go(x1, X2) are obtained by the same process. The second 
equation of the KS hierarchy (3.7) is 

gc(xl/x2) = [1 - pb(x12)] [ 1 - ~ f pb(x13) gc(x2, x3 ) dx3 

12~ x 3 , ] + f pb(x13) pb(x14) gc(x2, x4) dx3 dx4 q- R~ 2) (5.6) 

where R~ 2) is a negative remainder term of order r 
The bounds obtained from this equation are 

gc(xl/x2) <<. 1 - pb(x~2) (5.7a) 

gc(x1/x2) >/ [1-- pb(X,2) ] [1-- fi f Pb(X13) gc(X2, x3) dx3] 

>~ [1-- pb(X,z) ] [1-- fi f Pb(X13) dx3] 

~> [1 -- pb(x12)](1 -- r (5.7b) 

The bound (5.7a) also follows immediately from probability theory: the 
probability that the particles at xl and x2 are notconnected is the product 
of the probability that they are not directly connected and the probability 
that they are not indirectly connected. Bounding the latter by 1 gives (5.7a). 
The bounds (5.7) can be used with the exact relation 

gc(Xl/X2) -t- go(X1, x2) = ! (5.8) 

to give equivalent bounds for ge(xl, x2). For example, 

gc(xl, x2) ~> pb(x12) (5.9a) 

gc(x~, x2) <<. pb(X12) + [1 -- pb(x12) ] ~A 2 (5.9b) 

We see also that as r ~ 0, 

g,.(x~, x2) ~ pb(x~2) (5.10) 

Substituting (5.9b) into (5.7b) gives 

gc(Xl/X2))[1--pb(x12)][1--p f pb(x,3)pb(x23)dx3 

--fi2A~+fi2Azf pb(x13) pb(x23)dx3] (5.11) 
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6. R I G O R O U S  B O U N D S  FOR T H E  M E A N  C L U S T E R  SIZE 

Because it diverges at the percolation phase transition, the mean 
cluster size S(~5) is perhaps the best-studied quantity describing a con- 
tinuum percolation model. Thus, rigorous bounds on this quantity are of 
great interest. In this section, we will develop two elaborations of the 
method of Section 5 that allow us to give bounds on S(r We first write 
the quantity S(tS) in terms of an integral over the two-point connectedness 
function, and attempt to derive bounds for this integral directly using the 
Kirkwood-Salsburg expansion (3.7). Difficulties that arise in this method 
are discussed in some detail while using it to derive some low-order bounds 
for S(fi). We then propose an alternative method of deriving bounds on 
S(fi) that uses the equivalent, for percolation, of the compressibility rela- 
tion. Benefits and drawbacks of this method are also noted. Note that we 
use the notation gc(x) for the two-point connectedness function and gb(x) 
for the two-point blocking function. 

The volume integral over the two-point connectedness function g~(x) 
is directly related to the mean cluster size S(r by 

S(fi) = 1 + ~ f gc(X~2) dx12 (6.1) 

To see this, note that the probability density for finding a particle at x 2 
conditional to one being located at xl is just ~gc(x~2). Integrating this den- 
sity over all x2 gives the average size of the cluster containing the particle 
at x~. Since this particle is chosen arbitrarily, (6.1) follows. 

The case n = 2 of the Kirkwood-Salsburg hierarchy (3.7) gives upper 
and lower bounds for gc(1, 2) as discussed in Section 5. Naively, one might 
hope simply to integrate these bounds over the spatial variable x to derive 
bounds on S(~). This, however, is problematic. To see this, note first that 
the complexity of percolation models requires that more than one connec- 
redness function be defined for a fixed number of particles. The technical 
difficulties with which this paper is concerned arise largely from the fact 
that Kirkwood Salsburg bounds on any one of these functions involve the 
others. Specifically, as seen in Eq. (5.7), a lower bound for the blocking 
function go(l/2) requires an upper bound for the connectedness function 
go(l, 2). However, because of the normalization 

gc(1, 2) + gc(1/2) = 1 (6.2) 

these two types of bounds are equivalent. Thus, one requires an "initial" 
upper bound for go(l, 2) prior to using this procedure. This function has 
the trivial bound of unity, but this bound is not integrable. This difficulty 
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recurs in higher orders of the bounding procedure. Nevertheless, one can 
extract information about S(r Using the bound (5.9a) in (6.1) gives 

S(,6) ~> 1 + r (6.3) 

with A2 given by (5.2a). 
Equations (5.7) and (5.8) yield 

gc(1, 2) ~< Pb(Xlz) + [1 - pb(x,2)] f i f  Pb(X13) gc(X23) dx3 

Pb(Xl2) -'}- f i f  Pb(X13) gc(X23) dx3 (6.4) 

After integrating both sides over x2, this inequality can be solved for the 
integral of go(x): 

A2 (6.5) f gc(l'Z) dx2<~l_fiA ~ 

In this series of inequalities, (6.5)-(6.9), we assume 1 -  ~5A2 >i 0. Substitut- 
ing this into (6.1) gives 

1 
S(~) <~ 1 - fiA2 (6.6) 

To refine this inequality, we integrate the first line of (6.4) to give 

f gc(x12) dx2 <<. A2 + fiA2 f gc(x12) dx2 

-- p f Pb(X12) Pb(Xl3) go(x23) dx2 dx3 (6.7) 

We can derive a lower bound on the last term by using (5.9a). This gwes 
the bound 

--p f pb(X~2) pb(X13) go(X23) dx2 dx 3 - f iA  3 (6.8) 

Substituting (6.7)-(6.8) in (6.1) gives the bound for S(fi): 

S(fi) <~ (1 - ~2A3)/(1 -- r (6.9) 

It seems difficult to go beyond this directly. To proceed further, it may be 
more profitable to exploit a different bounding procedure for S(fi), which 
we now describe. 
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In an earlier paper (8) on the relationship between the CPM and 
percolation, we were led to explore the one-state limit of the CPM 
compressibility relation. This is a relation between the isothermal 
compressibility ;gr and spin-dependent distribution function ht = g t -  1. It 
is 

Xr= 1 - p ~ f h,(x12, oq, e2) dx12 (6.10) 
~1,~2 

If one takes an s derivative of both sides of this relation and sets s = 1, the 
result is 

Here the function h'(x) is defined by 

h'(xl, x 2 ) = d  s= 1 [g'(xlcq X z a ) -  1] (6.12) 

This function h'(x) is a new distribution function, first introduced into per- 
colation theory in ref. 9. If the CPM pressure is differentiated with respect 
to s and s is set equal to unity, the result is (no) ,  the mean number of 
clusters; the same operation applied to the CPM compressibility gives a 
related quantity 

Note that bounds for (n~.) in the form of a polynomial in density 
immediately give similar bounds for the quantity on the lhs of (6.13). 

One can see from (6.1) and (6.11)-(6.13) that, because sequences of 
upper and lower bounds for (no)  are already provided in Section 5 of this 
paper, a similar sequence for the function h'(x) would also give bounds for 
S(fi). We now provide such a sequence. Consider Eq. (3.2) for n = 2 with 
~ - - %  = e an arbitrary spin state. Taking an s derivative of this equation 
and setting s = 1 gives, on the lhs, the function h'(x). The terms on the rhs 
can be analyzed by the same methods used to analyze the terms of (3.11). 
Indeed, the resulting equation has exactly the form of (3.11), but with the 
weight factors 3 of (3.12) defined instead by 

d(P, P ' ) =  b2 = 1 (6.14) 

)b2-~ (b2-- 1)! , b 2 > l  
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with b2 defined above (3.10). Thus, it is natural that a simple extension of 
the arguments used in Appendix B to analyze (3.1) also characterize terms 
on the rhs of this equation. We first give the resulting Kirkwood-Salsburg 
equation for h'(x), then we explain this result. The equation is 

h'(x12) = - ( n c ) - I  

(-r m 2 
+ m! 1~ pb(Xlk) g . . . . .  , m + 2  dx3. . .dxm+ 2 

m = l  k = 3  

(6.15) 

We analyze the result of applying the operation (d/ds)Is= 1 to (3.2) by 
expanding the CPM distribution functions on the rhs of this equation in 
graphs, following the discussion in Appendix B. Each of the spin variables 
(~3,---, ~,) is summed over. Each has a factor ( 1 - ~ , )  in the integrand. 
Thus, each will generate a factor of ( s -  1) if the spin sum is not collapsed 
by connecting the corresponding particle to one whose spin variable is not 
summed over. But here no such variables are available, since the spins in 
question are forbidden to be in state ~1 [by the factor ( 1 - ~ , ) ]  and c~2 
is equal to cq. Thus, the best that can be done is to connect all the particles 
of (x3 ..... xn) in one cluster, leaving only a single independent spin sum to 
generate an (s - 1) factor. The s derivative then eliminates this factor. Thus, 
terms of the form shown on the rhs of (6.15) will survive the s derivative 
and s ~ 1 limit; the others will not. 

Note that, in the limit x~2 ~ ~ ,  the function h'(x~2 ) must approach 
zero [according to Eq. (6.11), its volume integral is finite]. It is easily seen 
that (6.15) is consistent with this statement. If the limit xi2 ~ oo is taken, 
the terms in the sum on the rhs of (6.15) approach the corresponding terms 
on the rhs ~of (3.6), that is, their sum exactly cancels the first term in the 
rhs of (6.15). Unfortunately, however, the same argument shows that terms 
on the rhs of (6.15) do not separately vanish in the limit xt2 ~ oo. Thus, 
the Kirkwood-Salsburg inequalities resulting from (6.15) must be com- 
bined with those from (3.6) to give the needed bounds on the integral of 
h'(x) needed in turn to bound the mean cluster size (6.1). The resulting 
bounds are not very efficient. However, this line of approach, combined 
with the proper rearrangement of the series (6.15), still seems to us to offer 
the best possibilities for deriving stronger bounds on the mean cluster size. 

We note in passing that Eq. (6.15) yields an immediate zero-separation 
theorem for the function h'(x). Indeed, in the limit x~2 ~ 0, all terms on the 
rhs of (6.15) except the first are equal to zero by definition of the functions 
in those terms. Thus, the first term on the rhs of (6.6) is the value taken 
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on by h'(x) at x = 0 .  By extension of the arguments presented in 
Appendix A, the partial sums of (6.15) furnish alternate upper and lower 
bounds for h'(x). In particular, the first term is also an upper bound for 
h'(x), in addition to being its value at x = 0. Thus, we gain a basic indica- 
tion that this function may be monotone decreasing, at least in the case of 
random sphere percolation studied here. 

7. C O N V E R G E N C E  PROOF FOR THE V IR IAL  SERIES 

In this section we obtain a lower bound for the radius of convergence 
of the virial series for the generalized blocking functions gb(1,..., n; P). This 
will be done by exploiting the expansion (3.11) and reducing the problem 
to a similar problem already solved in the thermal theory of mixtures. (2~ 
Because an equation for the mean number of clusters (no> has already 
been included in this hierarchy, we also obtain bounds on the virial series 
for this quantity. The argument of this section is very general; it applies to 
either random or correlated percolation with an arbitrary (finite-range) 
bond probability function pb(x). 

For simplicity, we first carry out this development for the case of 
sphere percolation, in which the bond probability is taken to be 

10, x<~a (7.1) pb(x) = x > 

We then sketch the argument for the general case. 
The mean number of clusters per particle in random continuum 

percolation is given by the virial series (8) 

<nc> = ~ 1 1 + ------= B'. r (7.2) 
[) n = l  n +  1 -  

where the fi'n are related to the irreducible Mayer cluster integrals fin of the 
CPM by 

d 
fl" = -;- fin (7.3) 

a s  

An equation for the quantity {no> has been included in the hierarchy of 
integral equations given by (3.11) [see the discussion below (3.12)]. 

We now obtain a lower bound on the radius of convergence of the 
various virial series in percolation theory by placing upper bounds on the 
rate of growth of the coefficients in these series. The Kirkwood-Salsburg 
equations (3.11) will be used to do this. It will be convenient to rewrite 
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(3.11) in terms of the analog, for percolation, of the cavity distribution 
functions. These functions are defined by 

/ 
. / yb(1 ..... n; P)=/3"gb(1 ..... n, P)/ [-[ [1 -Pb(Xij)] (7.4) 

They result from dividing out of the blocking function gb(1 ..... n; P) a 
factor [1 -pb(x~) ]  for each pair (i, j)  of particle indices (from the set ! 
through n) that are separated by the partition P. These functions are just 
the s-* 1 limit of the CPM cavity distribution functions. They have the 
benefit of being continuous functions of their arguments xi. 

Within its radius of convergence, the cavity function yb(t,..., n) can be 
expanded in a virial series 

yb(1,..., n; P) = ~ Pn.l(1,..., n; P) y (7.5) 
/ = 0  

If the expansions (7.5) are substituted into the Kirkwood-Salsburg 
equations for the yb(l ..... n; P) and the coefficients of equal powers of/3 are 
equated, the result is 

p~,~(1 ..... n ; P ) =  i ~k)~.k~d(P,P') 
k = O  P '  

|  (en_l+k(Z,...,n+k;P') ""J ~ ( n , - ~  pn_l+k,,_k(2,3,...,n+k;P') 

n + k  

| 1-1 pv(x~j) (7.6) 
j = n + l  

Here the e m functions inside the integral are CPM Boltzmann factors for 
the group of particles whose arguments they bear; they consist of a factor 
of [1 - p b ( x ) ]  for each pair of indices separated by the partition P'. In the 
ratio of ek functions, each factor occurring in the denominator also occurs 
in the numerator; this is true because the sum over partitions p' only 
contains those that are extensions of the partition P of (1 ..... n). 

We now make a basic observation. The recursive bounding procedure 
we have set up is almost identical to that used to prove convergence of 
virial expansions for the distribution functions of thermal mixtures, The 
main difference is the sum, in (7.6), over partitions P'. This sum results 
from the fact that a set of particles can be organized into clusters in many 
different ways. This extra multiplicity of terms will, naively, appear to 
result in a zero radius of convergence for the series involved. Com- 
binatorially, the different clusters act like different species, whose number 
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is, a priori, unlimited. This analogy should not be pushed too far, however; 
different clusters really act like extended particles whose density is limited 
by repulsive forces that act between them. These "forces" are probabilistic 
in origin; they reflect the fact that two clusters that are densely interlaced 
are likely to directly connect together and become one cluster. We exploit 
this effect as follows: when the arguments of all Yb functions are restricted 
to a finite domain, most terms on the rhs of (7.6) will either vanish or be 
small. 

These equations can now be used recursively to bound the coefficient 
functions Pn, t. Note that these equations relate Pn, t with n + l = m  to p,,~ 
with smaller values of m. Thus, if one has bounds 

max IP . . . . . .  (1,..., n; P)] ~< Kn . . . .  (7.7) 
P 

these equations can be used to establish such bounds for successively larger 
values of m. 

Before determining these bounds, we make one further observation. 
The p functions occurring on the rhs of (7.6) may have spatial arguments 
not contained in the p function on the lhs of that equation. All such 
arguments are restricted by factors of pb(X~k) to lie closer to x 1 than a. 
Thus, the Kirkwood-Salsburg equations (3.11) form a closed hierarchy for 
the {Yb}, when the arguments x2,..., x ,  are all restricted to lie closer to xl 
than a distance R. Here we choose R = •. In the case of sphere percolation, 
a sphere of radius ~ can contain at most 12 particles, no pair of which is 
directly connected. Thus, only blocking functions corresponding to a parti- 
tion into 12 or less clusters will occur on the rhs. This is the analogue, for 
sphere percolation, of the fact that the thermal Kirkwood-Salsburg equa- 
tions for a hard-sphere system truncate after 12 terms. The number of 
terms on the rhs of Eqs. (3.11) is thus the same as that in the Kirkwood-  
Salsburg equations for a mixture of 12 species. The bounds on the radius 
of convergence we derive for (7.2) will also be the same as in this case. 
Note that the weight factors d(P, P') are uniformly bounded by a constant 
(12! will suffice) and can thus be ignored in what follows. To see this, note 
that the argument just given allows us to limit our consideration to parti- 
tions P, P'  into 12 or less clusters. Substituting b~ + b2 ~< 12 into the expres- 
sion (3.12) for d gives the bound just stated. 

One then obtains a convergence bound as follows: if (7.7) is true for 
m = M - 1 ,  then (7.6) implies 

M n 1 

IP,.,,M_,,(1 ..... n)t<~ ~ -~.K,, t+k,M n+k(12A2) k 
k = 0  

(7.8) 
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where A2, as defined in (5.2a), is the volume integral of the bond proba- 
bility. Therefore, (7.7) will also be true for m = M if 

M n 1 
Kn, M-n~> ~ ~ K ~  ~+k,M_, k(12A2) x 

k = 0  
(7.9) 

We can satisfy the inequality (7.9) and thus inductively satisfy the bounds 
(7.7) by choosing 

Kn l = s(s + l) t -1  (12A2)t (7.10) 
' l !  

In particular, (7.7) also bounds the growth of the virial coefficients. 
Thus, using the root test for convergence, we derive a nonzero lower bound 
for the radius of convergence R of that series: 

1 
R ~ > - -  (7.11) 

12A2 

o r  

>~ 1_~=0.0199 (7.12) 
PO'3 ~" 167z 

We also give, for random percolation, a convergence bound which is 
complementary to (7.12). The order-m term on the rhs of (3.11) contains 
a sum of blocking functions, each with m position arguments or indices not 
contained in the blocking function on the lhs. In Appendix B, we recast this 
sum as a sum of connectedness functions, each with coefficient unity. There 
we show tfiat the coefficient of a function gc(1 ..... n +  m; P ' )  will be zero 
unless each of the indices (n + 1 ..... n + m) is placed by the partition P' in 
a group together with at least one of the indices (1 ..... n). In other words, 
each partition on the rhs is a partition into the same number of groups as 
the partition P on the lhs. If we now recast the order-m term as a sum of 
blocking functions, we find that most of them have cancelled out, namely 
those with a partition P' not satisfying the constraint just stated. The ones 
that remain have been diminished in magnitude by losing some of their 
connectedness functions in the cancellation process just described. A glance 
at (2.10) shows that this can only diminish their magnitude. Thus, we get 
an upper bound for gb(1 ..... n; P )  from (3.11) by replacing each of these 
diminished blocking functions by a full blocking function and changing its 
sign if necessary; this is just the Schwartz inequality. We can now repeat 
the recursive bounding procedure of (7.6)-(7.11). We carry out a separate 
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recursion for each value of J, where J is the number of groups into which 
the partition P divides its indices. The above argument shows that func- 
tions gb(1,..., n; P) with different values of J are not coupled by this proce- 
dure. The resulting bound is then identical to that obtained for a mixture 
of J species with identical fugacities, namely 

1 
R>~ j A  2 (7.13) 

For J <  12, this bound is better than (7.11). Note that no restriction was 
made on the domain of gb in deriving this proof; neither did we place any 
constraints on the choice of pb(x). 

In the case of positively correlated percolation with a finite-range 
repulsive potential ~b(x), one can easily generalize the first convergence 
bound given in this section, i.e., that leading to (7.11). The second bound 
developed is, however, not yet available for this case. 

8. C O N C L U S I O N S  

The connectedness functions of percolation models offer a structure 
similar to, if more complex than, that of the distribution functions that 
characterize thermal models. As such it is gratifying to learn that many of 
the techniques used to study distribution functions have analogs for con- 
nectedness functions. In this paper, we develop, and extract information 
from, two hierarchies of Kirkwood-Salsburg type for the connectedness 
functions of random continuum percolation. We offer several suggestions 
for further research. 

For a hard-sphere fluid, the partial sums of the fugacity series for the 
pressure provide upper and lower bounds on that quantity. The analog for 
random continuum percolation would be the statement that partial sums of 
the virial series for the mean number of clusters (nc) give bounds on that 
quantity. Is this statement true? The proof by Penrose (25) for the thermal 
problem breaks down for percolation, essentially because the d weights of 
Eq. (3.13) are not positive definite. Still, the result may be true. If so, it 
would have great practical importance for the use of these bounds: virial 
coefficients for percolation ~3'8) are far easier to calculate than bounds of the 
type developed in Section 5. The main reason for this is that virial coef- 
ficients for percolation involve only the specific linear combinations of 
Mayer graphs usually called modified Mayer graphs. The bounds of 
Section 5, on the other hand, will, in general, involve all of the separate 
Mayer graphs for percolation. 

Kirkwood-Salsburg hierarchies can be constructed for lattice models 
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as well as continuum models. The hierarchies developed in this paper can 
be applied to random lattice percolation simply by replacing volume 
integrals by sums over lattice points. They would then describe a site-bond 
percolation process with site density fi and bond density Pb. Certainly, 
lattice percolation models are a valuable testing ground for the higher- 
order bounds established in this paper, because the Mayer expansions on 
a lattice have been established to high order. Note, however, that multiple 
occupancy of sites is allowed in this random percolation model because of 
the absence of interaction. To recover the prohibition of multiple 
occupancy of sites, which is normally adopted in lattice percolation models, 
one must set 

~(Xi ,  Xj)  : ~(X i -- Xj)  (8.1) 

Strictly speaking, this takes us into the realm of correlated percolation, 
although only in a trivial way, since the interaction (8.1) does not establish 
long-range order. 

Finally, can the methods described here be extended to correlated per- 
colation with an arbitrary potential ~b(x)? This would permit valuable con- 
tact with the mathematical literature, (23'24) in which correlated percolation 
processes are frequently defined by considering two particles to be directly 
connected if they are closer together than the range of the interaction. 
Preliminary results are available. Equations (3.11) have the alternating 
bound property for an arbitrary positive potential ~b(x). Thus, they provide 
an infinite sequence of upper and lower bounds for 'any positively 
correlated percolation model. We show this at the end of Appendix B. The 
convergence proof of Section 7 is easily extended to provide a bound on the 
radius of convergence for an arbitrary positive, finite-range potential. In 
particular, this includes the well-studied case of PCS percolation, (18) in 
which particles have a hard core surrounded by a larger inclusion sphere 
defining pairwise connectedness. A separate study of numerical applications 
of the methods developed here is being prepared. 

A P P E N D I X  A. ON THE R E M A I N D E R  T E R M  IN 
THE K I R K W O O D - S A L S B U R G  E Q U A T I O N S  
( 3 . 6 ) - ( 3 . 7 )  

In this Appendix, we show that the remainder terms given by suc- 
cessive truncations of Eqs. (3.6)-(3.7) alternate in sign, thus establishing 
the upper and lower bounds calculated in Section 4. Terms on the rhs of 
(3.6)-(3.7) clearly alternate in sign. The remainder term shares the 
structure of these terms and thus inherits their definiteness in sign. 
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The thermal Kirkwood-Salsburg equations may be developed 
systematically as a Taylor series in a small parameter 2 which is identified 
with the interaction strength of a particular particle, which is here chosen 
to be particle 1. The remainder term resulting from truncation of these 
equations after l terms is then given directly by the remainder theorem of 
calculus. Equations (3.6)-(3.7) are derived from the thermal Kirkwood-  
Salsburg hierarchy by applying the projection operator (3.3). Their 
remainder term is derived in the same way. It is 3 

f~ ( 1 - 2 )  ~ ~ (2) l~ i  e_~(x.;o 
R / + l = ( - - f i ) / + 1  E 1~ (1- -  r d~ l! Z(O) i = 2  

k+/+l  
|  ]-I f (x , i )e-~(x";~ (A.1) 

i=k+~ 

To establish the sign of this term, we first simplify it, then carry out the 
spin sum. Except for the integration over 2 (which involves only positive 
quantities) this remainder term differs from a typical term on the rhs of 
(3.6)-(3.7) only in the presence of the factors e ~. Once we show that these 
factors are positive definite, and that their spin dependence does not affect 
the value of (A.1), the result follows by the same argument that shows that 
the rhs terms of (3.6) (3.7) alternate in sign. 

These factors are defined by 

e~(X"~) = [1 + 2f(xli)] (A.2) 

with the CPM Mayer function given by 

f ( x  li) = -pb(x  l~)(1 - 6~1~ ,) (a.3) 

Each such factor occurring in (A.1) is paired with a factor ( 1 -  6~,). The 
ones outside the integral get such a factor from the projection operator; the 
ones inside the integral get this factor from the Mayer functions. Because 
of this, we can make the replacement 

e ~(x"x) ~ [1 - )~pb(Xli)] (a.4) 

This quantity (as well as its reciprocal) is positive definite. The function gt 
under the integral sign is then transformed into a connectedness function 
exactly as in the terms on the rhs of (3.5). Since this function is positive 
definite, the sign dependence of the remainder term results entirely from the 
product inside the integral sign. Thus, the remainder term has the sign (_y+l. 

3 Our notation follows that in ref. 20. See Eq. (3.10) of that paper. 
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B. PROPERTIES OF THE INTEGRANDS IN THE 
KIRKWOOD-SALSBURG HIERARCHY (3.11) 

In this Appendix, explicit expressions are derived for the mtegrands in 
the Kirkwood-Salsburg hierarchy (3.11). These show immediately that 
these integrands lie between zero and unity, and that they, in fact, define 
probability densities that are readily characterized. In perticular, we show 
that the nth-order term on the rhs of (3.11) has the sign ( - ) ' .  This 
property will extend to the remainder term of (3.11) (the remainder after 
the first n terms) and thus show that truncations of (3.11) give alternating 
upper and lower bounds. This is the same sequence carried out in 
Appendix A for Eqs. (3.6)-(3.7). We show how to extend this argument to 
the case of correlated percolation at the end of this Appendix. 

The basis of our argument is this: as we saw in Section 3, we can get 
a useful Kirkwood-Salsburg hierarchy only in terms of the blocking func- 
tions. However, we can best understand the content of a typical term on 
the rhs of (3.11) by evaluating it in terms of conneetedness functions. To 
do this, we return to Eq. (3.2), expand each distribution function on the rhs 
following Fortuin and Kastelyn, carry out the spin sums, and characterize 
the terms that survive the s ~ 1 limit which is needed to give Eq. (3.11). 

Thus, we first express the CPM distribution functions g , ( l ~  ..... n~,) as 
an ensemble average over the system characterized by the Hamiltonian 
(1.1) [with ~b(x)= 0]. The total Boltzmann factor can be written 

~I e-~H~= [I {Pb(Xo )6:i~j+[1-pb(xO')j} 
i < j  i < j  

(B.1) 

with pb(Xij) given by (1.2). We now expand this product and identify each 
term with a graph having a particular connectedness structure, just as in 
the argument following Eq. (2.2). We will show that the surviving graphs 
are precisely those which make up a particular subset of the n-point 
connectedness functions. Since the sum of a / / t h e  n-point connectedness 
functions gives the n-point distribution function (equal to unity for random 
percolation), this will establish the claims made above. 

If the expansion of (B.1) is substituted into (3.11 ), all terms will vanish 
except for those in which each of the particles at internal positions 
x,+l ..... X,+m (those integrated over) are connected to at least one of the 
particles at external positions x2 ..... x , .  To see this, note that each of the 
spin variables e ,+ l  ..... e,+m is summed over the integrand, and that the 
integrand contains factors (1-6~1~j) corresponding to each. Thus, each 
such sum will give a factor of ( s - 1 )  and the corresponding term will 
vanish. Only a factor of Kronecker delta equating an external and internal 
spin variable will collapse the spin sum over the latter, and thus give a non- 

822/59/3-4-31 
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zero contribution to the rhs. Only direct or indirect bonds between the 
corresponding particles produce this factor. This argument shows that in 
the s --* 1 limit, only the part of the CPM distribution function will survive 
that corresponds to the probability density just described. Because the con- 
nectedness functions describe disjoint sets of events, this probability density 
can be written as a sum of such functions, each with coefficient unity. We 
can now repeat the argument of Appendix A to show that Eq. (3.11) has 
the alternating bound property. 

The argument for correlated percolation is similar. We first write the 
Mayer bond for the full pairwise Hamiltonian (1.1): 

f ( x )  = --e-~C)(x)pb(X)(1 -- 6~i~j ) + (e -~r - 1) (B.2) 

We now expand the product of f bonds in the integrand on the rhs of 
(3.11). For each of the resulting terms, we carry out the spin sums and 
interpret the result as a sum of connectedness functions. Essential in the 
process is the fact that, for positive potentials ~b(x), Eq. (B.2) expresses the 
Mayer bond as a sum of two negative-definite terms. The conclusions in 
this case are identical to those above. 

C. A S E Q U E N C E  OF M O N O T O N E  C O N V E R G E N T  B O U N D S  
FOR BLOCKING F U N C T I O N S  

In this Appendix, we show the existence of a sequence of bounds for 
the generalized blocking functions that, except possibly for a small number 
of low-order bounds, will converge monotonically to these functions. It is 
felt that the techniques used in this argument can be sharpened con- 
siderably; we present the argument as much for this reason as for the 
Specific results demonstrated here. 

The generalized blocking functions used in this paper to develop 
integral equation hierarchies are, for several reasons, a fortunate choice of 
basis functions for describing the structure of percolation. One of these is 
the existence, for these functions, of a powerful set of inequalities. One has 

gb(1,...,n; P)>/ gb(1 ..... n+  1;P')  (c.1) 

Here P' is any partition of (1 ..... n + 1) consistent with P, in the sense that 
it coincides with P when restricted to (1,..., n). Equation (C.1) is valid 
because the blocking functions are defined as the probability that a group 
of connections are absent, namely those that would join two particles 
whose indices are separated by the partition P. Adding more particles to 
one of the subsets indexed by P, and thus more constraints, can only 
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reduce the corresponding probability. An elementary theorem of analysis 
asserts: 

T h e o r e m  1. If successive terms in an alternating series decrease in 
magnitude to zero, then the successive partial sums of that series give 
monotonically convergent upper and lower bounds to the sum of the series. 

We want to use this theorem to establish a monotone sequence of 
bounds for the sequence for the series in (3.11) and thus for the blocking 
functions. In this Appendix, for simplicity, we will focus on the case n = 2, 
i.e., on bounds for the function go(l/2). Two considerations are involved in 
doing this: first, showing that the magnitudes of terms in the density expan- 
sion in (3.11) eventually decrease; second, treating the fact that the 
dweights in (3.11) may be of either sign. The monotone decrease of the 
magnitudes of these terms would be established if (C.1) could be used to 
show that each contribution to the term of order m on the rhs of (3.11) 
dominates a group of contributions to the term of order (m + 1). We call 
the latter the "descendants" of the former. They will be contributions 
derived from it in the sense of (C.1), that is, by adding a particle to one of 
the subsets defined by the partition P. By (3.12), a contribution and its 
descendants will have the same d weight. 

If a gb function partitions its arguments into bl subsets, the Kirkwood- 
Salsburg expansion (3.11) of that function will express it in terms of gb 
functions that partition their arguments into no more than bl + 12 subsets. 
The argument following Eq. (6.8) establishes this. For the case b~ = 2 con- 
sidered here, i.e., for the two-point function go(l/2), the expansion of the 
rhs of (3.11) will involve partitions P' into b~ + 12 = 14 subsets. Thus, for 
rn > 14, contributions of order rn + 1 can always be paired with contribu- 
tions of order m having partitions with the same number of subsets. This 
is useful because we want to compare only contributions having the same 
dweight. Also, because of the term rn! in the denominators of each term, 
the sum of contributions of order m + 1 will be less than the sum of con- 
tributions of order m provided that each contribution has no more than 14 
descendants. Thus, the magnitudes of successive terms in the density expan- 
sion of (3.11) will decrease, possibly after a finite number of terms of non- 
monotone behavior. 

If one then divides this density expansion into a sum of those con- 
tributions with d negative and those with d positive, denoted glp and g~ ,  
respectively, the lemma cited at the start of this Appendix will apply. One 
can thus write go(l/2) as a difference of these two functions, and find a 
sequence of decreasing upper bounds on the former, and monotone 
increasing lower bounds on the latter (again except possibly for the first 14 
terms). Their successive differences will give monotone decreasing upper 
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bounds on gc(1/2). The corresponding process gives monotone increasing 
lower bounds. This same procedure gives monotone convergent bounds for 
any gb function, except possibly for the first b1+12 bounds in the 
sequence. 
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